IVANA LOVRIĆ

Patofiziologija hormonskih poremećaja u domaćih tvorova

DIPLOMSKI RAD

Zagreb, 2017.
Diplomski rad je izrađen na Zavodu za patološku fiziologiju Veterinarskog fakulteta Sveučilišta u Zagrebu.

Predstojnica Zavoda za patološku fiziologiju: prof. dr. sc. Nina Poljičak Milas

Mentorice rada: izv. prof. dr. sc. Romana Turk
\hspace{1cm} doc. dr. sc. Maja Belić

Članovi povjerenstva za izradu diplomskog rada:

1. prof. dr. sc. Mirna Robić
2. izv. prof. dr. sc. Romana Turk
3. doc. dr. sc. Maja Belić
4. prof. dr. sc. Nina Poljičak-Milas (zamjena)
Zahvala

Zahvaljujem se mentoricama izv. prof. dr. sc. Romani Turk i doc. dr. sc. Maji Belić na pomoći i stručnom vodstvu pri izradi ovog rada.

Zahvaljujem se svojim kolegama i dragim prijateljima na pomoći i brojnim lijepim i zabavnim trenucima provedenim na fakultetu i izvan njega zbog kojih će mi sve ove godine ostati u divnom sjećanju.

Najveća hvala mojoj majci na brizi, bezuvjetnoj potpori i razumijevanju tijekom studiranja.
SADRŽAJ RADA

1. Uvod .. 1
2. Anatomija i fiziologija ... 3
 2.1. Izgled tijela .. 3
 2.2. Dlačni pokrivač i koža .. 3
 2.3. Osjetila .. 5
 2.4. Koštni sustav ... 5
 2.5. Unutarnji organi ... 6
 2.6. Ponašanje .. 8
 2.7. Reprodukcija .. 8
 2.8. Prehrana .. 9

3. Hormonski poremećaji ... 11
 3.1. Tumori Langerhansovih otočića .. 11
 3.1.1. Patofiziologija .. 11
 3.1.2. Anamneza i klinička slika ... 12
 3.1.3. Dijagnostika ... 13
 3.1.4. Liječenje ... 15
 3.1.5. Prognoza .. 17
 3.2. Bolest nadbubrežne žlijezde .. 17
 3.2.1. Hiperadrenokorticizam .. 18
 3.2.1.1. Patofiziologija .. 18
 3.2.1.2. Anamneza i klinička slika .. 20
 3.2.1.3. Dijagnostički testovi ... 22
 3.2.1.4. Liječenje .. 23
 3.2.1.5. Prognoza ... 24
 3.2.2. Feokromocitom .. 24
 3.3. Diabetes mellitus ... 25
 3.3.1. Klinička slika i dijagnostički testovi .. 25
 3.3.2. Liječenje .. 26
 3.3.3. Prognoza .. 27
 3.4. Bolesti štitinjače ... 27
4. Zaključak ... 29
<table>
<thead>
<tr>
<th></th>
<th>Sažetak</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Summary</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>Literatura</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Životopis</td>
<td>37</td>
</tr>
</tbody>
</table>
1. Uvod

Hormonski poremećaji, osobito oni povezani s neoplastičnim bolestima, često se susreću u domaćih tvorova. Inzulinomi ili tumori stanica Langerhansovih otočića i tumori nadbubrežne žlijezde čine većinu neoplazija od kojih obolijevaju tvorovi te su posebno česti u životinja srednje do starije dobi iako se ponekad mogu pojaviti i u mladih tvorova. Osim ove dvije bolesti, perzistentni estrus je također dobro istražen endokrinološki poremećaj koji pogoda nekastrirane ženke tvora. Inducirana ovulacija je svojstvena ženkama te one ostaju u estrusu dok ne dođe do parenja ili dokle god dnevni foto period traje više od dvanaest sati. Prolongirani estrus dovodi do supresije koštane srži te se posljedično tome razvija pancitopenija. Vlasnicima se preporučuje obavezna kastracija tvorova ukoliko neće biti korišteni u rasplodne svrhe. Međutim, kirurška intervencija potencijalno može rezultirati razvojem neoplazmi nadbubrežne žlijezde te se time objašnjava visoka učestalost hiperadrenokorticizma u tvorova držanih kao kućnih ljubimaca (SHOEMAKER i VAN ZEELAND, 2013.). Cilj ovog diplomskog rada je opisati najčešće endokrinološke poremećaje u domaćih tvorova, objasniti mehanizam nastanka pojedinih bolesti te obuhvatiti pregled trenutno dostupnih informacija o etiologiji, kliničkim znakovima, dijagnostičkim testovima, liječenju i prognozi.

Tvorovi pripadaju porodici psolikih zvijeri (Mustelidae) i srodnii su kunama zlaticama, vidrama, tvorovima (Mephitis mephitis), jazavcima, hermelinima i lasicama (GRZIMEK, 1990.). Mustelidae su podred unutar reda zvijeri. U glavnom imaju šiljaste njuške i hodaju na šapama u koje se kandže ne mogu uvući. Prvi podaci o tvorovima nalaze se u Aristotelovim opisima 350. godine prije Krista. Smatra se da su prvi tvorovi došli s Rimljanima u Europu tijekom mnogih ratnih invazija (FOX, 1998; ZEUNER, 1963.). Domaći tvor u Australiju dospijeva iz Europe početkom 19. stoljeća kako bi se kontrolirala populacija europskog zeca koji je ranije predstavljao australskom ekosustavu. Srećom, mnogi predatori, kao što su lisica, dingo i sokol, istrijebili su domaćeg tvora koji se nikad nije uspio prekomjerno razmnožiti. Ipak, kad su tvorovi pušteni iz istih razloga na novoizlandsko tlo zajedno s lasicama i hermelinima, nekontrolirano su se razvijale divljje kolonije koje su i danas prisutne upravo zbog nedostatka tvorovima prirodnih predatora (FOX, 1998.). Utjecaj divljih tvorova na život divljih životinja Novog Zelanda i dan danas je kontroverzna tema (LEWINGTON, 2000b.) jer se smatra da su igrali veliku ulogu u smanjenju broja endemičnih ptica kao što su kiwi (Apteryx spp.), weka (Gallirallus australis), plava patka (Hymenolaimus malacorhynchos) te kakapo (Strigops habroptilus).
Velik broj ljudi diljem svijeta danas tvorove smatra vrlo praktičnim kućnim ljubimcima. Građom su sitni, uredni i rado se upuštaju u interakciju sa svojim vlasnicima, drugim kućnim ljubimcima i drugim tvorovima. Međutim, budući vlasnici trebali bi biti svjesni uvjeta držanja i načina ponašanja ovih životinja. Tvorovi nisu idealni kućni ljubimci za obitelji s malom djecom te će vrlo vjerojatno u jednom trenutku života oboljeti od jedne ili više neoplazija. U nekim dijelovima svijeta domaći tvorovi nisu registrirani kao kućni ljubimci te je njihovo posjedovanje ilegalno ukoliko se ne ishode specijalne dozvole za njihovo držanje (CARPENTER i QUESENBERRY, 2012.).
2. Anatomija i fiziologija

2.1. Izgled tijela

Tjelesna težina nekastriranog mužjaka kreće se u rasponu od 1 do 2 kilograma dok je kod ženki taj raspon od 600 grama do 1 kilogram (LEWINGTON, 2000c.). Ako se kastriraju, ženke tvora postaju veće, a mužjaci manji u odnosu na nekastrirane pripadnike istog spola. Tvorovi kastrirani prije dosezanja spolne zrelosti teže između 0,8 i 1,2 kilograma. Mužjaci koji su bili kastrirani ranije ne razvijaju mišićav vrat i ramena karakteristične za nekastrirane mužjake. Izmjenom godišnjih doba dolazi i do promjene u tjelesnoj težini, ljeti gube a zimi dobivaju na masi. Kod kastriranih životinja variranje u tjelesnoj težini nije osobito izraženo dok kod nekastriranih životinja razlika između godišnjih doba može dosezati i do 40%.

2.2. Dlačni pokrivač i koža

"Divlja" boja dlake domaćih tvorova najčešće odgovara boji europskih vrsta. To je boja poznata kao *fitch-ferret* ili *sable* a odnosi se na crnu boju dlake sa poddlakom bez boje, crnim
stopalima i repom te crnom maskom na licu. Ostale dvije boje koje se prirodno pojavljuju su albino, koju odlikuje bjelkasto-žuto krzno i nepigmentirane oči te crvenkasto-smeđa (sandy).

Tvorovi se linjaju u proljeće i jesen, usporedno s promjenom njihove tjelesne mase. Dlaka može varirati u duljini te je obično kraća ljeti a dulja u jesen. Također, boja dlake se mijenja s promjenom godišnjeg doba, zimi je svjetlija dok je u jesen obično tamnija. U nekastriranih ženki dolazi do opadanja dlake s pojavom prve ovulacije u sezoni parenja te ju obično prati ponovni rast dlake nakon parenja. Novo izrasla dlaka je obično tamnija i glađa u odnosu na originalni dlančni pokrivač (FOX i BELL, 1998.). Ako ne dođe do parenja, moguća je pojava područja s alopecijom. Ukoliko se ženka u estrusu podvrgne ovariohisterektomiji, nova dlaka izrast će unutar mjesec dana od operativnog zahvata. Opadanje dlake i promjena boje manje je izražena u životinja oba spola ukoliko su kastrirane. Veterinari bi trebali poznавати циклус измена дланчног покриваца у творова и их узети у обзир приликом укланjanja dlake zbog izvođenja kirurškog zahvata ili dijagnostičkih procedura. Često se dogodi da dlaka ne raste tjednima ili mjesecima a raste u trenutku kada dolazi do opadanja dlake.

Koža tvorova je debela, osobito u području vrata i ramena što ih štiti prilikom napada od strane drugih tvoora ili prilikom parenja kad mužjaci grizu vrat ženke. Zdrava koža je glatka, bez pojave krastica i ljuskica. Tvorovi nemaju žlijezdne znojnice u koži pa u nepovoljnim uvjetima vrlo brzo može doći do pregrijavanja (MOODY i sur., 1985.). Imaju vrlo aktiven žlijezd kožnice koji su odgovorni za njihov karakterističan miris. Tijekom sezone parenja, kod nekastriranih životinja dolazi do pojave izrazito jakog tjelesnog mirisa, žutog obojenja poddlake i mašćenja krzna kao posljedica pojačanog rada žlijezda lojnice.

Tvorovi imaju dvije dobro izražene analne vrećice, kao i drugi pripadnici Mustelida. Spomenute vrećice proizvode seroznu žutu tekućinu karakterističnog mirisa. Često tvorovi koji su uplašeni ili se osjećaju ugroženo mogu izlučivati sadržaj analnih vrećica no ne mogu je izbacivati na veću udaljenost kao tvoori. Neugodan miris obično potraje nekoliko minuta a životinje sadržaj iz analnih vrećica sve rjeđe izlučuju kako odrastaju i navikavaju se na okoliš u kojem žive.
2.3. Osjetila

Tvorni imaju dobro izražen binokularni vid i dobro se snalaze u slabijem osvjetljenju jer su njihovi preci uglavnom lovili s pojavom sumraka ili u noći. Mrežnica sadrži čunjiće i ganglijske stanice no nije poznato koliko dobro raspoznaju boje (WHARY i ANDREWS, 1998.). Također, imaju izrazito razvijeno osjetilo njuha te razvijaju olfaktornu preferenciju prema određenoj hrani tijekom prva tri mjeseca života. Do četvrtog mjeseca života razvijaju olfaktorna svojstva na različite tipove hrane, pa je nakon tog vremena gotovo nemoguće promijeniti prehrambene navike odraslog tvora (APFELBACH, 1973.).

2.4. Koštani sustav

Lubanja odraslog tvora je duga i uska te nema izražene šavove. Zubna formula tvora je 2(I3/3 C1/1 P3/3 M1/2) = 34. Mliječni zubi izbijaju u dobi od 20 do 28 dana a trajni u dobi od 50 do 74 dana. Gornji sjekutići su dulji od donjih te ih prekrivaju kad su usta životinje zatvorena. Očnjaci imaju dulje korijene nego krune te se ovo obilježje mora uzeti u obzir prilikom vađenja zubi.

Kralješnica tvora je duga i savitljiva te sadrži sedam vratnih, petnaest torakalnih, pet do sedam lumbalnih, tri sakralna i osamnaest repnih kralježaka. Tvorni imaju petnaest pari rebara od kojih je prvi deset vezano na sternum. Na svakoj nozi tvora nalazi se po pet prstiju s noktom. Palac se sastoji od dvije falange dok ostali prsti sadrže po tri (AN i EVANS, 1998.).
2.5. Unutarnji organi

Srce se nalazi između šestog i osmog rebra. Ligament koji veže srce za sternum obložen je masnim tkivom čija količina može varirati od životinje do životinje. Ova karakteristika daje dojam da je sjena srca odignuta od sternuma kad se promatra rendgenska slika srca u lateralnoj projekciji. Jedan od najranijih znakova povećanja srca je pojava sjene srca koja direktno naliježe na sternum.

Pluća tvorova sastoje se od šest režnjeva. Lijevo plućno krilo čine dva režanja, lijevi kranijalni i lijevi kaudalni režanj. Desno plućno krivo čine četiri režanja, desni kranijalni, desni srednji, desni kaudalni i akcesorni režanj. Timus može varirati u veličini ovisno o dobi životinje (AN i EVANS, 1998.) i često je mjesto nastanka neoplazije koja se očituje pojavom izražene kranijalne medijastinalne mase u tvorova mladih od jedne godine (CARPENTER i QUESENBERRY, 2012.). Tvorovi imaju pet pari žlijezda slinovnica: parotidnu, zigomatičnu, molarnu, podjezičnu i mandibularnu žlijezdu slinovnicu. Submandibularni limfni čvorovi nalaze se kranijalno od mandibularne žlijezde slinovnice. Limfni čvorovi mogu se povećati, osobito u slučaju pojave limfoma te se mogu zamijeniti s nekim od žlijezdi slinovnica.

Slezena tvorova također može varirati u veličini ovisno o dobi životinje i zdravstvenom stanju. Slezena je smještena duž velike krivine želuca te je njime i jetrom vezana gastropleničnim ligamentom. Jetra tvora relativno je velika i sastoje se od šest režnjeva. Žučni mjehur je kruškolikog oblika a smješten je između dva režanja jetre, lobus quadratus i lobus hepatis dexter medialis. Tvorovi imaju jednostavan želudac koji se može poprilično raširiti kako bi s u njemu smjestila velika količina hrane. Iako imaju sposobnost povraćanja, ne čine to uvijek kad je prisutno strano tijelo u jednjaku ili želudcu. Kada pak povraćaju, prije samog čina povraćanja, tvorovi uzmiču, pognu glavu, mršte se i izrazito sline. Tanko crijevo je kratko i duljine otprilike 182 do 198 cm (AN i EVANS, 1998.). Posljedično ovome, vrijeme potrebno da hrana prođe kroz gastrointestinalni sustav je tri do četiri sata. Mikroflora crijeva je jednostavna te rijetko dolazi do narušavanja iste prilikom primjene antibiotika (BELL, 1999.). Tvorovi nemaju slijepo crijevo (AN i EVANS, 1998.). Nadbubrežne žlijezde tvorova starijih od dvije godine često su mjesta razvoja patoloških stanja. Desna nadbubrežna žlijezda je nešto veća od lijeve i veličine je od 8 do 11 milimetara. Desnu nadbubrežnu žlijezdu opskrbljuje krivlju tri do pet žila koje potječu od desne
renalne arterije, desne adrenolumbalne arterije i aorte. Lijevu nadbubrežnu žlijezdu krvlju opskrbljuju dva ili više ogranaka lijeve adrenolumbalne arterije (HOLMES, 1961.).

Desni bubreg nalazi se kranijalno od lijevog bubrega u retroperitonealno smještenoj nakupini masnog tkiva. Mokračni mjehur je malen i ima zapreminu od 10 mililitara (WHARY i ANDREWS, 1998.). Mužjaci imaju malu prostatu koja se nalazi na bazi mokračnog mjehura i okružuje uretru. Os penis je oblika slova ‘J’ što često otežava kateterizaciju.

U ženki tvora se kaudalno od bubrega nalaze jajnici koji su za trbušnu stijenku vezani širokim i suspenzornim ligamentom. Maternica je dvorožna s kratkim tijelom i jednim grljkom, vrlo slično mačkama. Vulva je izrazito povećana prilikom ulaska životinje u estrus (AN i EVANS, 1998.).

Tablica 1. Fiziološka obilježja domaćih tvorova

<table>
<thead>
<tr>
<th>Parametar</th>
<th>Referentna vrijednost za zdrave životinje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tjelesna težina, nekastrirani mužjaci</td>
<td>1-2 kg</td>
</tr>
<tr>
<td>Tjelesna težina, nekastrirane žene</td>
<td>0.6 - 1 kg</td>
</tr>
<tr>
<td>Tjelesna težina, kastrirani, oba spola</td>
<td>0.8 - 1.2 kg</td>
</tr>
<tr>
<td>Životni vijek</td>
<td>5-11 god</td>
</tr>
<tr>
<td>Spolna zrelost</td>
<td>6-12 mjeseci nakon poroda</td>
</tr>
<tr>
<td>Trajanje gravidnosti</td>
<td>41 - 43 dana</td>
</tr>
<tr>
<td>Veličina legla</td>
<td>1 - 18 mladunaca, 8 prosječno</td>
</tr>
<tr>
<td>Težina pri porodu</td>
<td>6 - 12 g</td>
</tr>
<tr>
<td>Otvaranje očiju i ušiju</td>
<td>32 - 34 dana</td>
</tr>
<tr>
<td>Rasplodna dob</td>
<td>6 - 8 tjedana</td>
</tr>
<tr>
<td>Tjelesna temperatura</td>
<td>37.8 - 40°C</td>
</tr>
<tr>
<td>Prosječan volumen krvi</td>
<td>Odrasli mužjak, 60mL</td>
</tr>
<tr>
<td></td>
<td>Odrasla ženka, 40mL</td>
</tr>
<tr>
<td>Broj otkucaja</td>
<td>200-400 otkucaja / minuti</td>
</tr>
<tr>
<td>Broj udisaja</td>
<td>33 - 36 udisaja / minuti</td>
</tr>
<tr>
<td>Volumen urina</td>
<td>26 - 28 mL / 24h</td>
</tr>
<tr>
<td>pH urina</td>
<td>6.5 - 7.5</td>
</tr>
</tbody>
</table>

2.6. Ponašanje

Domaći tvor zadržao je ponašanje i fiziologiju koji odlikuju njihove pretke predatore (POOLE, 1997.). Instinktivna ponašanja koja je domaći tvor zadržao su ona svojstvena igri, obilježavanju teritorija i lovu. Često upražnjavaju vrlo agresivnu igru koja im služi za učenje vještine lova, obrane i iskazivanje agresije. Tvorovi uglavnom iskazuju agresivno ponašanje u situacijama kad se nalaze u društvu nepoznatih ljudi ili kad se osjećaju ugroženo (POOLE, 1966.). Mužjaci zubima čvrsto drže vrat ženke prilikom parenja. Koža vrata je znatno deblja pa može izdržati prilično jake ugrize bez pojave bilo kakvih ozljeda. Tvorovi se također služe jakim ugrizima vrata prilikom lova plijena.

Uzbuđeno glasanje tvora može biti prilično glasno i uznemirujuće no životinje se uglavnom tako glasaju u situacijama kad su uplašene ali ne i prilikom reagiranja na bol (POOLE, 1967.). S obzirom da su zbog svojih kratkih nogu vrlo blizu zemlji, tavorsi veliku većinu vremena provode njuškići tlo i istražujući svoj okoliš. Prilikom istraživanja dolazi do udisanja čestica prašine i glasnog kihanja koje zvuči kao kombinacija kašljanja i kihanja što može zabrinuti vlasnike. Vlasnici bi trebali zatražiti mišljenje veterinara samo ukoliko je kihanje učestalo i pojavljuje se uz dodatne kliničke znakove. Vlasnicima se preporučuje da se tvorove u što ranijoj dobi odvrati od grizenja a na tržištu postoji niz proizvoda kao i različiti tipovi treninga koji u tome mogu pomoći (CARPENTER i QUESENBERRY, 2012.). Kako su tavorsi vrlo aktivne životinje koje veliki dio vremena provode u igri, nužno je osmisлити im životni prostor na način da sadrži različite predmete i prostore u kojima mogu iskazivati ponašanje svojstveno tavorovima (LEWINGTON, 2000c.).

2.7. Reprodukcija

Spol tvora može se vrlo lako utvrditi pregledom životinje. Prepucijalni otvor u mužjaka nalazi se na trbuhi, kaudalno od pupka, kao i kod pasa. Os penis lako se utvrđuje palpacijom. U ženki je urogenitalni otvor smješten u perinealnom području. Spolni ciklusi i mužjaka i ženki određeni su foto periodom te postaju plodni u vrijeme kad dani postaju dulji. Sezona parenja tavora na
sjevernoj Zemljinoj polutki je od ožujka do kolovoza. Primjenom umjetnog osvjetljenja, moguće je postići pojavu parenja tijekom cijele godine (FOX, 1998.). U sezoni parenja pripadnici oba spola imaju izrazit tjelesni miris koji se pojavljuje kao posljedica pojačanog izlučivanja žlijezda lojnica i urina.

Ženke tvora su sezonski poliestrične, a ovulacija je inducirana kopulacijom. Ovulacija se javlja 30 do 40 sati nakon parenja. U tvorova gravidnost traje 41 do 43 dana a ženka se sama brine o mladunčadi. Gravidnost se može utvrditi najranije s 14 dana nježnom palpacijom ili ultrazvukom. Ukoliko ne dođe do oplodnjenja, pojavljuje se pseudogravidnost koja traje 41 do 43 dana. Ako se ne pare, ženke ostaju u estrusu dok se ne promijeni foto period ili dok se ne podvrgnu liječenju hormonima. U suprotnom, ugibaju od hiperestrogenizma. Mladunci se rađaju slijepi i gluhi, prekriveni tankim slojem bijelog krzna. Oči i uši otvaraju se u starosti od 32 do 34 dana a sisati prestaju sa šest do osam tjedana (LEWINGTON, 2000.).

2.8. Prehrana

Domaći tvorovi su strogi mesojedi te moraju jesti cijeli plijen koji su najčešće manje životinje. Izmet tvorova zato je malog volumena i vrlo suh. Imaju kratak gastrointestinalni sustav s malim brojem crijevnih bakterija i enzima pa ne mogu efikasno iskorištavati ugljikohidrate ili probavljati vlakna. U prirodi se s ugljikohidratima susreću jedino prilikom jedenja drugih životinja koje u želucu sadrže djelomično probavljene ugljikohidrate pa tvoitori moraju biti hranjeni hranom koja je bogata mastima i kvalitetnim proteinima dobivenim iz mesa i minimalnom količinom ugljikohidrata i vlakana. Najčešće se kao cijeli plijen daju pilići, miševi i štakori. Na tržištu se nalazi velik broj hrane u dehidriranom obliku no takva hrana je često bogata žitaricama. Velika količina proteina iz biljaka može dovesti do pojave mokraćnih kamenaca. Također, velika količina ugljikohidrata u prehrani tvoira može se negativno odraziti na zdravlje gušterače i dovesti do oštećenja beta stanica. Kao dodaci prehrani dopuštena su sirova jaja, cijeli svježi organ ili mišić. Nije potrebno termički obraditi meso i jaja ukoliko su primjereni za prehranu ljudi. Ulje
bogato omega-3 masnim kiselinama, kao što je riblje ulje i mast s mesa mogu se dodati u hranu kako bi se zadovoljile potrebe tvorova za energijom koju dobivaju prvenstveno iz masti.

S obzirom da imaju izrazito kratak gastrointestinalni sustav, post nije potrebno provoditi dulje od tri sata kako bi se izmjerila koncentracija glukoze u krvi. Primjerice, šest sati je dovoljno kako bi se gastrointestinalni sustav ispraznio za potrebe kirurškog zahvata. Kod domaćih tvorova starih od dvije godine vrlo je velika mogućnost pojave inzulinoma te bi dug post mogao rezultirati pojavom ozbiljne hipoglikemije (BELL, 1999.).
3. Hormonski poremećaji

3.1. Tumori Langerhansovih otočića

Tumori Langerhansovih otočića vrlo su česti u starijih tvorova i tvorova srednje dobi. Stanice Langerhansovih otočića sačinjene su od bar četiri tipa stanica, beta ili B stanica koje izlučuju inzulin, alfa ili A stanica koje izlučuju glukagon, delta ili D stanica koje izlučuju somatostatin i F stanica koje izlučuju pankreasne polipeptide. Ove stanice posložene su u grupe poznate kao Langerhansovi otočići te čine endokrini pankreas (LURYE i BEHREND, 2001.). Iako se mogu pojaviti i tumori drugih stanica Langerhansovih otočića, ipak su u tvorova najčešći tumori beta stanica. Tumori beta stanica Langerhansovih otočića poznati kao inzulinomi proizvode prevelike količine inzulina što rezultira pojavom hipoglikemije.

3.1.1. Patofiziologija

Tumori beta stanica pankreasa povećavaju sekreciju bazalnog inzulina. Također, tumorske stanice ne reagiraju na normalne inhibitorske mehanizme te izlučuju prevelike količine inzulina kao odgovor na normalne podražaje (MELEO, 1990.). Zbog dugotrajne inzuliniemije javljaju se metabolički učinci inzulina, onemogućene su glukoneogeneza i glikogenoliza u jetri dok je periferni unos glukoze u stanice tkiva povišen. Niska koncentracija glukoze u krvi zdravih životinja aktivira glukoreceptore u rombencefalonu i hipotalamusu i inducira otpuštanje glukagona, kortizola, adrenalina i hormona rasta. Ovi hormoni povećavaju koncentraciju glukoze u krvi u zdravih životinja aktivira glukoreceptore u rombencefalonu i hipotalamusu i inducira otpuštanje glukagona, kortizola, adrenalina i hormona rasta. Ovi hormoni povećavaju koncentraciju glukoze u krvi stimuliirajući glukoneogenezu i glikogenolizu u jetri te onemogućuju periferni unos glukoze. Ovakva povratna veza je neaktivna u životinja s inzulinomima te su kod njih hiperglikemijski učinci glukagona, adrenalina, kortizola i hormona rasta onemogućeni a koncentracija glukoze u krvi se nastavlja smanjivati (LEIFER i sur., 1986; NELSON i FOODMAN, 1985.).
Klinički znakovi hipoglikemije ovise o brzini smanjivanja koncentracije glukoze u krvi i trajanju hipoglikemije (LEIFER i sur., 1986.). Simptomi su najčešće svrstani u neuroglukopenične ili adrenergične simptome ili kombinacija oboje. Stanice živčanog tkiva unose glukozu difuzijom koja nije ovisna o inzulinu. Kako stanice živčanog sustava imaju izrazito visoku metaboličku potrošnju a glukoza je primarni izvor energije, kao posljedica hipoglikemije javljaju se neuroglukopenični simptomi. Kad je tim stanicama uskraćena glukoza, kao klinički znakovi javljaju se apatija, letargija, ataksija, epileptični napad i koma (NELSON, 1995.). Adrenergični simptomi javljaju se kad se koncentracija glukoze u krvi počne izrazito brzo smanjivati. Tada se počinju otpuštati katekolamini te se javljaju učinci simpatikusa kao što su tahikardija, hipotermija, tremor, irritabilnost i mišićne fascikulacije (LEIFER i sur., 1986.).

3.1.2. Anamneza i klinički pregled

Klinički znakovi mogu biti akutni ili kronični, a pojavljuju se kroz nekoliko tjedana ili mjeseci. Kod većine tvarova s inzulinom zapaža se povremena slabost i letargija. Apetit može biti ili očuvan ili neznatno smanjen te ga često prati gubitak tjelesne težine. Vlasnici najčešće primjećuju ataksiju ili slabost, izrazito naglašenu na području stražnjih nogu.

U epizodama akutne hipoglikemije, tvorovi su izrazito mirni i ne reagiraju na vanjske podražaje. Ovakve epizode mogu potrajati nekoliko minuta do nekoliko sati i uglavnom završavaju spontanom ozdravljenjem ili nakon što im vlasnik na usta aplicira šećernu otopinu. Vlasnici često opisuju oči tvorova kao “staklaste” za vrijeme takvih epizoda. Nalaz pri kliničkom pregledu varira od slučaja do slučaja. Najčešće su prisutni gubitak tjelesne težine, mišićna slabost i letargija. Simptomi koji su često vezani uz neka druga oboljenja (gubitak ili stanjivanje dlake, kožne mase i srčane aritmije) također mogu biti prisutni kod tvorova s inzulinom. Neoplazije nadbubrežne žlijezde, limfom, razni tumori kože i kardiomiopatija česte su bolesti koje se pojavljuju istovremeno s inzulinom.

Ponekad se tvorovi s tumorom Langerhansovih otočića čine zdravi i nemaju nikakvih izraženih kliničkih znakova. U takvih životinja moguće je nalaz pankreasnih nodula tijekom
eksplorativne laparoskopije. Histološki se takvi noduli najčešće opisuju ili kao hiperplazija stanica Langerhansovih otočića ili kao tumori. Inzulinomi se općenito histološki obilježavaju kao maligni. Primjenom imunohistokemijskih bojanja dokazano je da mali postotak tumora producira i ostale peptidne hormone kao što su somatostatin, glukagon i pankreasni polipeptidi (CARPENTER i QUESENBERRY, 2012.).

![Slika 1. Relativno velik tumor pankreasa tvora (I)](Izvor: Endocrine diseases in ferrets, 2013.)

3.1.3. Dijagnostika

Sumnju na tumor beta stanica Langerhansovih otočića možemo postaviti na temelju anamneze, kliničkog nalaza i zabilježene hipoglikemije. Koncentracija glukoze u krvi može se mjeriti glukometrom s odgovarajućim trakicama namijenjenim za primjenu u humanoj medicini. Kako bi se sa sigurnošću utvrdila hipoglikemija, potrebno je uzimati serijske uzorke krvi ili
nakon pomno praćenog posta (četiri do šest sati). Na inzulinom u tvorova upućuje koncentracija glukoze u krvi niža od 60 mg/dl. Koncentracija glukoze u krvi u zdravih tvorova kreće se u rasponu od 94 do 207 mg/dl dok se kod tvorova u postu kreće od 90 do 125 mg/dl (CAPLAN i sur., 1996.). Međutim, neki se tvorovi mogu naviknuti na kronično nisku koncentraciju glukoze u krvi te se kod ovih životinja prilikom kliničkog pregleda ne zapažaju simptomi karakteristični za inzulinom iako im je koncentracija glukoze u krvi oko 40 do 50 ml/dl.

Osim hipoglikemije, za postavljanje dijagnoze iznimno je bitno odrediti i koncentraciju inzulina. Sekrecija inzulina trebala bi biti zaustavljena kad koncentracija glukoze u krvi padne ispod 60 mg/dl. Dijagnozu inzulinoma potvrđuju istovremena prisutnost hipoglikemije i visoke koncentracije inzulina u krvi a isključuju ukoliko je koncentracija inzulina vrlo niska uz pojavu hipoglikemije (LURYE i BEHREND, 2001.). Također, ukoliko se kod tvorova uoči hipoglikemija, uvijek bi se diferencijalno dijagnostički trebala razmotriti druga bolesna stanja kao što su izglađnjelost, neodgovarajuća prehrana, bolesti jetre ili sepsa kako se tvorovima ne bi propisala neodgovarajuća terapija (primjerice za inzulinom).

Koncentracija inzulina u zdravih tvorova kreće se u rasponu od 33 do 311 pmol/l (MARCONDES i sur., 1992.) dok kod tvorova oboljelih od inzulinoma, koncentracija inzulina može dosezati i 2000 pmol/l. Ako se prilikom mjerenja inzulina utvrđi njegova koncentracija unutar referentnih vrijednosti za tvorove, nužno je ponoviti mjerenje koncentracije inzulina nakon nekoliko dana ili serijski izmjeriti koncentracije glukoze u krvi kako bi se utvrdio uzorak karakterističan za stanje hipoglikemije (MARINI i sur., 1993.). U svakog tvora u kojeg se sumnja na inzulinom, potrebno je napraviti kompletnu krvnu sliku i biokemijske pretrage. Povišenje koncentracija alanin aminotransferaze i aspartat aminotransferaze su česte i mogu upućivati na jetrenu lipidozu koja je uzrokovana kroničnom hipoglikemijom ili na jetrene metastaze koje su posljedica tumora Langerhansovih otočića pankreasa. Hematološke abnormalnosti koje se ponekad mogu pojaviti uključuju leukocitozu, neutrofiliju i monocitozu (CAPLAN i sur., 1996.).
Tablica 2. Referentne vrijednosti endokrinoloških testova u tvorova

<table>
<thead>
<tr>
<th>Hormon</th>
<th>Spol</th>
<th>Vrijednosti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inzulin (pmol/L)</td>
<td></td>
<td>36-251 (5-35μU/mL)</td>
</tr>
<tr>
<td>Kortizol (nmol/L)</td>
<td></td>
<td>25.9-235 (srednaja vrijednost ± SEM, 73.8 ± 7)</td>
</tr>
<tr>
<td>Tiroksin (μg/dL)</td>
<td>♂</td>
<td>1.01-8.29 (srednja vrijednost 4.5)</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>0.71-2.54 (srednja vrijednost 1.38)</td>
</tr>
<tr>
<td>Trijodtironin (ng/mL)</td>
<td>♂</td>
<td>0.45-0.78 (srednja vrijednost 0.61)</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>0.29-0.73 (srednja vrijednost 0.53)</td>
</tr>
<tr>
<td>Srednja vrijednost za tiroksin (μg/dL)</td>
<td>♂</td>
<td>2.53 u 0 sati ; 3.37 u 2 sati</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>3.97 u 4 sati ; 3.45 u 6 sati</td>
</tr>
</tbody>
</table>

Rendgenske pretrage i ultrazvuk obično ne daju nalaze na temelju kojih bi se mogla postaviti sumnja na inzulinom. Međutim, ultrazvuk može biti korisna metoda za utvrđivanje zdravstvenog statusa životinja koja se podvrgava kirurškom zahvatu. Jetrena lipidoza ili infiltrati koji mogu upućivati na jetrene metastaze također mogu biti utvrđeni ultrazvukom. Ukoliko se uoče bilo kakve abnormalnosti, preporučuje se uzimanje uzoraka putem biopsije prilikom izvođenja kirurškog zahvata kako bi se uzorci uputili na histološku pretragu (CARPENTER i QUESENBERRY, 2012.).

3.1.4. Liječenje

U liječenju tvorova s inzulinom odabire se ili kirurška ili medikamentozna terapija, što ovisi o ozbiljnosti i stupnju uznapređenoj bolesti, dobi tvora i odluci vlasnika. Prednizolon i
Diazoksid su najčešće korišteni lijekovi u terapiji inzulinoma. Somatostatin, koji inhibira sintezu i sekreciju inzulina od strane normalnih i neoplastičnih beta stanica, se također koristio u nekoliko slučajeva inzulinoma no uspješnost liječenja nije do kraja dokazana. U liječenju inzulinoma se kao lijekovi izbora koriste prednizolon i drugi glukokortikoidi koji induciraju glukoneogenezu. Tvorovi osobito dobro odgovaraju na terapiju glukokortikoidima te kod njih nisu utvrđene teške nuspojave koje se uglavnom pojavljuju kod drugih vrsta životinja. Povećanje tjelesne težine i usporen rast dlake (što upućuje na jatrogeno inducirano Cushingovu bolest) se ponekad mogu pojaviti u onih tvorova koji su dulje vrijeme tretirani glukokortikoidima. Također, glukoneogenski potencijal glukokortikoida rezultira povišenjem koncentracije glukoze što može biti kontraindicirano za primjenu u tvorova oboljelih od inzulinoma zbog opasnosti da dodatno stimuliraju sekreciju inzulina.

Diazoksid, registriran za liječenje inzulinoma u ljudi, inhibira otpuštanje inzulina te mu se često daje prednost nad ostalim glukokortikoidima. Liječenje obično započinje primjenom oralne doze od 5 mg/kg dva puta dnevno te se na temelju odgovora pacijenta doza može postepeno povećavati. Ako se mjeri koncentracija glukoze u plazmi kako bi se pratila uspješnost liječenja diazoksidom, uzorci krvi bi se uvijek trebali prikupljati četiri sata nakon primjene diazoksida. Ako se stanje pacijenta ne popravi nakon što se doza diazoksida poveća na 15 do 20 mg/kg dva puta dnevno te su klinički znakovi i dalje prisutni, uvodi se prednizolon u koncentraciji od 0,2 do 1 mg/kg jednom dnevno. Doze oba lijeka mogu se dalje povećavati no jedini ograničavajući faktor je pojava nuspojava kao što su povraćanje i anoreksija (LEIFER i sur., 1986.). Primjena ovog protokola liječenja omogućilo je oboljelim tvorovima preživljavanje u prosjeku od dvije godine (SHOEMAKER i VAN ZEELAND, 2013.).

Kirurško liječenje je obično najbolja opcija kako bi se eliminirao izvor dodatne proizvodnje inzulina (LEIFER i sur., 1986.). Ipak, kirurška ekscizija tumora često neće biti dovoljna kako bi se uklonili simptomi jer male tumorske tvorbe često prolaze nezapaženo prilikom kirurškog zahvata (SHOEMAKER i VAN ZEELAND, 2013.). Djelomična pankreatektomija se preporučuje kako bi se uklonili tumori koji se teško detektiraju te omogućilo dulje vrijeme preživljavanja nakon kirurškog zahvata (CAPLAN i sur., 1996; FIX i HARMS, 1990; MARINI i sur., 1993.).
3.1.5. Prognoza

Srednja vrijednost duljine trajanja stanja slobodnog od inzulinoma je oko jedne godine a samo vrijeme preživljavanja iznosi oko tri godine. Ponovno pojavljivanje kliničkih znakova vezano je uz pojavu novih inzulinoma i nije posljedica zaostajanja metastaza ranije uklonjenog tumora. Ako se ukloni prevelika količina tkiva pankreasa, mogu se pojaviti teške komplikacije kao što je diabetes mellitus (SHOEMAKER i VAN ZEELAND, 2013.).

3.2. Bolesti nadbubrežne žlijezde

Nadbubrežna žlijezda sisavaca sastoji se od dva različita dijela, koji se razlikuju ne samo po morfologiji i funkciji, već i po embrionalnom podrijetlu (McGAVIN i ZACHARY, 2007.). Vanjski dio, kora (cortex) je svijetlja, radijalno isprugana i mezodermalnog porijekla. Unutarnji dio, srž (medulla) je tamnija, ektodermlnog porijekla, a potječe od simpatičkog tkiva, tako da predstavlja simpatičke paraganglije. Na presjeku žlijezda pokazuje vanjski prugastu koru, što omogućuje lagano razlikovanje od drugih struktura, kao npr. limfnih čvorova. Kora nadbubrežne žlijezde ima tri zone: zona glomerulosa, zona fasciculata i zona reticularis (KONIG i LIEBICH, 2009.).

Kora nadbubrežne žlijezde proizvodi hormone, nazvane kortikosteroidi. Mineralokortikosteroidi (aldosteron) reguliraju metabolizam minerala i vode te su za njihovo izlučivanje odgovorne stanice zona glomeruloze. Sekretorne stanice zona fascikulate bogate su citoplazmatskim lipidima i odgovorne su za izlučivanje glukokortikoida (kortizol) koji reguliraju metabolizam ugljikohidrata. Sekretorne stanice zona retikularis organizirane su u male skupine, okružene kapilarama i odgovorne su za izlučivanje spolnih steroidnih hormona (McGAVIN i ZACHARY, 2007.). Aktivnost kore nadbubrežne žlijezde regulira adrenokortikotropni hormon adenohipofize (ACTH). Srž nadbubrežne žlijezde ima dvije zone (zona intermedia i zona juxtamedullaris) i proizvodi hormone (neurotransmitere) katekolamine, adrenalin i noradrenalin. Lučenje adrenalinja potiče simpatički živčani sustav i u akutnim stresnim stanjima njegova razina u krvi je povišena. Noradrenalin utječe na regulaciju krvnog tlaka. Srž nadbubrežne žlijezde koordinira odgovor tijela na akutni stres zajedno s autonomnim živčanim sustavom (KONIG i LIEBICH, 2009.). Najčešća bolest nadbubrežne žlijezde u tvorova je hiperadrenokorticizam.
3.2.1. Hiperadrenokorticizam

3.2.1.1. Patofiziologija

Hiperadrenokorticizam se najčešće susreće u tvorova srednje do starije dobi te ih primarno obilježava gubitak dlake s većeg područja tijela u oba spola te povećanje vulve u ženke tvora. Patofiziologija hiperadrenokorticizma u tvorova bitno se razlikuje od hiperadrenokorticizma drugih domaćih životinja. U pasa je zahvaćena zona fascikulata kore nadbubrežne žlijezde što ima za posljedicu povećano izlučivanje kortizola (Cushingova bolest i Cushingov sindrom). U tvorova je hiperplazijom, adenomom ili adenokarcinomom zahvaćena zona retikularis kore nadbubrežne žlijezde koja izlučuje spolne hormone (estradiol, 17-hidroksiprogesteron i drugih androgene) zbog čega su ti hormoni povišeni kod hiperadrenokorticizma tvorova, dok je koncentracija kortizola u plazmi rijetko kada povišena (MILLER i sur., 2013; SHOEMAKER i sur., 2000; SIMON-FREILICHER, 2008; WAGNER i sur., 2005.).

Tijekom embrionalnog razvoja, jajnici i nadbubrežne žlijezde dijele vrlo blisku anatomsku vezu (AREY, 1965.). Mala gnijezda nediferenciranih stanica gonada mogu biti prenesena zajedno sa nadbubrežnim žlijezdam prilikom migracije pa se smještaju ispod kapsule nadbubrežne žlijezde. Prilikom djelovanja odgovarajućeg stimulansa (npr. gonadektomija) ove nediferencirane stanice u nadbubrežnoj žlijezdi mogu se transformirati u stanice koje su funkcionalno vrlo slične stanicama gonada. Moguće je da u tvorova hiperplazija i tumori nadbubrežne žlijezde nastaju kao posljedica metaplazije tih nediferenciranih gonadnih stanica u nadbubrežnoj žlijezdi. Drugi mogući uzroci odnose se na način držanja. Primjerice, u SAD-u je to jedna od najčešćih bolesti tvorova dok se u Velikoj Britaniji pojavljuje vrlo rijetko. U SAD-u su tvořovi najčešće hranjeni komercijalnom hranom dok se u Velikoj Britaniji najčešće hrane cijelim plijenom. Također, tvořovi u SAD-u se najčešće drže u kućama i stanovima kao kućni ljubimci dok su u Velikoj Britaniji uglavnom držani vani te su izloženi prirodnim foto periodima. Većina populacije tvořeva u SAD-u je križana u srodstvu dok to nije slučaj u Velikoj Britaniji.

Pravi uzrok patoloških promjena koje nastaju u nadbubrežnoj žlijezdi tvora nije poznat iako se kao mogući uzrok često navodi kastracija premladih životinja. Hipotalamus je podijeljen na prednji i stražnji spolni centar. Podražaji koji dolaze iz okoline poput jačine svjetla, topline i mirisa dospijevaju u prednji spolni centar.
Iz njega se živčani podražaji šalju u stražnji spolni centar. U stražnjem spolnom centru se sintetiziraju specijalne tvari neurosekreta koje inhibiraju ili aktiviraju sekretornu aktivnost prednjeg režnja hipofize (adenohipofize). U adenohipofizi se sintetiziraju sljedeći hormoni: hormon rasta (GH), prolaktin, adrenokortikotropni hormon (ACTH), tireostimulirajući hormon (TSH), luteinizirajući hormon (LH) i folikulostimulirajući hormon (FSH). Aktivnost gonada ovisi o funkciji hipotalamusno-hipofiznog sustava jer su gonade ciljni organi za djelovanje gonadotropnih hormona. Razina spolnih hormona ovisi o duljini dana odnosno noći. U vrijeme kada je tvor izložen tami dulje od 12 sati pojačano se luče hormon melatonin iz epifize, koji uzrokuje supresiju hormona otpuštanja gonadotropina (engl. gonadotropin-releasing hormone, (GnRH) i inhibira LH pa se tada ne luče spolni hormoni i tvorovi su izvan sezone parenja (LEWINGTON, 2007.). Kada osjetila poput kože, nosa ili očiju registriraju podražaje iz vanjskog svijeta npr. jačinu svjetlosti, prenose ih u koru velikog mozga, a iz kore živčanim putevima u hipotalamus. U prednjem spolnom centru se ti podražaji analiziraju i prenose u stražnji spolni centar koji uzrokuje sintezu neurosekreta GnRH. GnRH portalnim krvotokom stiže u adenohipofizu i inducira tvorbu LH i FSH (SAMARDŽIJA i sur., 2010.). FSH je odgovoran za razvoj jajnih folikula i sintezu estrogena dok je LH odgovoran za pojavu ovulacije kod vrsta kod kojih ona započinje spontano.

Hipotalamus kastriranih tvorova, koji su izloženi neodgovarajućem svjetlosnom režimu, nastavlja izlučivati GnRH koji stimulira hipofizu, a ona posljedično tome otpušta LH i FSH. Povišene koncentracije LH i FSH stimuliraju zonu retikularis nadbubrežne žlijezde što rezultira povećanom sekrecijom spolnih hormona. Kada nije prisutna normalna sekrecija estrogena i androgena iz gonada, dolazi do gubitka negativne povratne sprege na hipotalamus, GnRH se kontinuirano otpušta a trajna stimulacija rezultira pojavom hiperadrenokorticizma (SHOEMAKER i sur., 2000.). U prilog ovoj teoriji govore pokusi provedeni na miševima kod kojih se nakon gonadektomije u vrlo ranoj dobi redovito pojavljuju nodularna hiperplazija ili neoplazija kore nadbubrežne žlijezde a ona posljedično tome luči prevelike količine estrogena ili androgena (FEKETE i sur., 1941; KRISHNA MURTHY i sur., 1970; SHARAWY i sur., 1980.).
Slika 2. Petehijalna krvarenja nastala zbog trombocitopenije kao posljedica perzistentnog estrusa

(Izvor: Endocrine diseases in ferrets, 2013.)

3.2.1.2. Anamneza i klinička slika

Alopecija koja zahvaća veći dio tijela je najčešći klinički nalaz. Gubitak dlake obično započinje u kasnim zimskim mjesecima i može se nastaviti sve dok tvor u potpunosti ne izgubi dlaku. Ponekad dlaka ponovno izraste tijekom jeseni no sljedeće zime alopecija se ponovno pojavljuje. U kastriranih ženki s bolešću nadbubrežne žlijezde često se na pregledu uočava povećanje vulve. U anamenzi mužjaka često se navode disurija ili strangurija.

Ipak, većina tvorova s bolešću nadbubrežne žlijezde su ženke. Vulva se normalno povećava za vrijeme estrusa i mnogi vlasnici tvorova znaju da prolongirani estrus može uzrokovati toksikozu koštane srži. Alopecija kao najčešći klinički nalaz jednako zahvaća i mužjake i ženke te je karakteristično da dlaka otpada vrlo lako. Alopecija je obično simetrična i započinje na stražnjem...
dijelu tijela, repu te napređuje prema trbuhi i leđima. U više od jedne trećine tvorova, vlasnici primjećuju pruritus koji je osobito izražen na leđima između lopatica. Pruritus obično prati alopeciju no u određenom broju slučajeva može biti i jedini simptom a koža je često eritematozna na područjima zahvaćenim alopecijom.

Kod ženki je povećana vulva oteknuta i edematozna i često je prisutan seromukozan iscjedak koji na citološkom pregledu upućuje na vaginitis (ROSENTHAL, 1996.). U mužjaka se pojavljaju disurija ili strangurija (COLEMAN i sur., 1998; ROSENTHAL i PETERSON, 1996.) koje su posljedica razvoja periuretralnih cisti koje sužavaju mokraćne puteve što dodatno otežava postavljanje katetera u mokraćni mjehur. Tvorovi s neprohodnim mokraćnim putevima mogu oboljeti od metaboličkog poremećaja opasnog po život te su takvi pacijenti obično hitni slučajevi.

Povećane nadbubrežne žlijezde se u nekim slučajevima mogu i palpirati prilikom kliničkog pregleda kao i povećani mezenterični limfní čvorovi. Lijeva nadbubrežna žlijezda se lakše nalazi u odnosu na desnu. Obično je okružena većom količinom masnog tkiva kranijalno od lijevog bubrega i palpira se kao mala, tvrda okruglasta tvojba. Desnu nadbubrežnu žlijezdu je teže palpirati jer je smještena kranijalnije i nalazi se ispod režnja jetre (CARPENTER i QUESENBERRY, 2012.).

![Slika 4. Alopecija u sedmogodišnje kastrirane ženke tvora s hiperadrenokorticizmom](Izvor: Endocrine diseases in ferrets, 2013.)
3.2.1.3. Dijagnostički testovi

Postavljanje dijagnoze bazira se na anamnezi, kliničkim znakovima, nalazom ultrazvuka i testiranjem steroidnih hormona. Iako rijetko, bolest nadbubrežne žlijezde može biti povezana s neregenerativnom anemijom. Pancitopenija također može biti prisutna ako je bolest vrlo ozbiljna ili dugotrajna. Rezultati biokemijskih pretraga su uglavnom unutar referentnih vrijednosti za tvorove. Koncentracija alanin aminotransferaze je povremeno visoka no zasad nije razjašnjena uzročno – posljedična veza s bolesti nadbubrežne žlijezde. Analiza urina kojom se određuje omjer kortikoida i kreatinina u kombinaciji s testom supresije deksametazonom je koristan test koji se redovito provodi u pasa s Cushingovom bolešću no zasad u tvorova nije pronašao značajniju primjenu. Ultrazvuk abdomena je vrlo korisna dijagnostička metoda kojom se mogu uočiti povećane nadbubrežne žlijezde a istovremeno i promijenjeni organi kod drugih bolesti kao što su bolesti jetre, bubrega, metastaze inzulinoma ili povećani limfni čvorovi. Također, ultrazvukom se može odrediti veličina, građa te stupanj povećanja nadbubrežne žlijezde (BESSO i sur., 2000; KUPERSMITH i BAUCK, 1991; NEUWIRTH i sur., 1997; O’BRIEN i sur., 1996.).

U tvorova s bolešću nadbubrežne žlijezde vrlo je korisno mjerenje koncentracija steroidnih hormona. Komercijalno su dostupni hormonski paneli kojima se mjere estradiol, androstendion i 17-hidroksiprogesteron u uzorcima seruma (dostupno pri Clinical Endocrinology Laboratory of the Department of Comparative Medicine at the University of Tennessee [www.vet.utk.edu/diagnostic/endocrinology.html]). U zdravim kastriranim tvorova, ovi steroidni hormoni su prisutni u vrlo niskim koncentracijama dok su kod tvorova s hiperadrenokorticizmom prisutne izrazito visoke koncentracije jednog ili više hormona (ROSENTHAL i PETERSON, 1996.).
3.2.1.4. Liječenje

U terapiji bolesti nadbubrežne žlijezde najčešće se provodi kirurški zahvat i/ili korištenje dugodjelujućih analoga GnRH. Na odabir terapije utječe niz faktora. U obzir treba uzeti dob tvora, prisutnost još neke bolesti (npr. bubrežna insuficijencija, limfom i/ili kardiomiopatija), rizik samog operativnog zahvata (koji je veći ako je zahvaćena samo desna ili čak obje nadbubrežne žlijezde) i financijske mogućnosti vlasnika. Ako se odabere kirurški zahvat, važno je znati da će i dalje biti prisutno otpuštanje gonadotropina što će rezultirati kontinuiranom stimulacijom preostale nadbubrežne žlijezde te bi ona kasnije također mogla biti zahvaćena.

Jedna od komplikacija kirurškog zahvata je mogućnost da se prilikom kompletanog odstranjivanja nadbubrežne žlijezde zahvati i dio stijenke kaudalne vene cavae. Zbog toga se mnogi kirurzi odlučuju na odstranjivanje samo dijela nadbubrežne žlijezde što predstavlja rizik za ponovno pojavljivanje bolesti. Ako se kirurškim zahvatom odstrane obje nadbubrežne žlijezde, postoji mogućnost razvoja hipoadrenokorticizma (SHOEMAKER i VAN ZEELAND, 2013.).

3.2.1.5. Prognoza

Prognoza za tvorove oboljele od hiperadrenokorticizma je generalno dobra. Prosječni period u kojem se bolest ne pojavljuje je 16,5 mjeseci i 13,6 mjeseci za tvorove liječene deslorelinom (LENNOX i WAGNER, 2012.). Međutim, kod mužjaka tvora šanse za preživljavanje su male ukoliko dođe do oboljenja prostate zbog kojeg nastaje po život opasna neprohodnost mokraćnih putova (ROSENTHAL i WYRE, 2012.).

3.2.2. Feokromocitom

Feokromocitomi su najčešći tumori srži nadbubrežne žlijezde životinja koji se najčešće pojavljuju kod goveda i pasa dok se u tvorova pojavljuju rijetko (FOX i sur., 2000.). Feokromocitomi koji su veliki mogu dovesti do destrukcije velikog dijela tkiva zahvaćene nadbubrežne žlijezde. Veliki feokromocitomi su multilobularni i žućkaste do crvenosmeđe boje, što je posljedica pojave područja s krvarenjima i nekrozama. Feokromocitomi koji su maligni prodiru preko kapsule nadbubrežne žlijezde u okolne strukture, kao što je kaudalna vena cava te metastaziraju u udaljene organe uključujući jetru, regionalnu slabinsku aortu, limfne čvorove bubrega i pluća. Funkcionalani feokromocitomi sastoje se od stanica koje luče adrenalin i/ili noradrenalin no u životinja se rijetko pojavljuju (McGAVIN i ZACHARY, 2007.). Klinički znakovi koji se javljaju kao posljedica prekomjernog lučenja katekolamina uglavnom su vezani za kardiovaskularni sustav (CARPENTER i QUESENBERRY, 2012.).

Kod nekoliko pasa i konja kod kojih su pronađeni feokromocitomi koji luče velike količine katekolamina, kliničkim pregledom utvrđene su tahiokardijska, edem i hipertrofija srca. Kod pasa oboljelih od feokromocitoma i s kliničkim znakovima koji upućuju na paroksizmalnu hipertenziju utvrđena je skleroza arterija i raširena hiperplazija medije arteriola. Visok krvni tlak čest je simptom koji se javlja u drugih vrsta, no u tvorova nije utvrđen. Histološki, tumorske stanice mogu varirati od malih, okruglastih, poliedričnih stanica do izrazito velikih, pleomorfnih
stanica s više hiperkromatičnih jezgri. Citoplazma im je blago eozinofilna, fino granulirana i slabo vidljiva (McGAVIN i ZACHARY, 2007.). Histološka dijagnoza feokromocitoma u tvorova potvrđuje se imunohistokemijskim bojanjem. Životinje oboljele od feokromocitoma slabo odgovaraju na primjenu kemoterapije te se kao metoda liječenja provodi kirurška ekscizija tumora. Uspješnost liječenja u tvorova s feokromocitomom je vrlo niska.

3.3. Diabetes mellitus

3.3.1. Klinička slika i dijagnostički testovi

Dijagnoza diabetesa mellitusa tvorova postavlja se na temelju odgovarajućih kliničkih znakova (poliurija/polidipsija), nedavne operacije inzulinoma navedene u povijesti bolesti, učestalo povišene koncentracije glukoze, niske koncentracije inzulina u krvi i normalne do visoke koncentracije glukagona u krvi.

U tvorova dijabetičara obično je prisutna izrazita hiperglikemija. Iako se već može postaviti sumnja na dijabetes kad je koncentracija glukoze u krvi viša od 400 mg/dl, nužno je u
ponavljanim mjerenjima izmjeriti visoke razine glukoze u krvi kako bi se potvrdila hiperglikemija. Kompletna krvna slika je obično normalna. Međutim, ako se istovremeno pojavljuje infekcija mokraćnog mjehura, obično je povišen broj bijelih krvnih stanica. Glukozurija također može biti prisutna te se u uznemiravajućim slučajevima mogu utvrditi i ketonska tijela. Iako rendgensko snimanje i ultrazvuk nisu korisni pri dijagnosticiranju dijabetesa, mogu biti korisni kako bi se utvrdile druge bolesti kao što su splenomegalija, povećanje jetre i bolesti srca.

3.3.2. Liječenje

Uspješnost liječenja dijabetesa ovisi o ozbiljnosti hiperglikemije i prisutnosti drugih metaboličkih poremećaja. U liječenju se uglavnom koriste isti protokoli koji se koriste u liječenju mačaka i pasa. Preporučuje se korištenje neutralnog protamin Hagedorn inzulina te se započinje s dozom od 0,5 do 1 UI inzulina po tvoru dva puta dnevno. Ovisno o koncentraciji glukoze u krvi, koncentracija inzulina može se naknadno povisiti ili smanjiti. Nužno je pretraživati urin na prisutnost glukoze ili ketonskih tijela. Nakon što se stabilizira koncentracija
glukoze u krvi na vrijednost između 125 i 200 mg/ dl, pacijent se može otpustiti kući s propisanom terapijom. Neki tvorovi primaju Ultralente inzulin, koji ima dulje vrijeme djelovanja za razliku od protamin Hagedorn inzulina te se injekcije inzulina daju samo jednom dnevno. Vlasnike se mora uputiti da provjeravaju prisutnost ketonskih tijela u mokraći putem dijagnostičkih test traka. Ako nije utvrđena prisutnost glukoze u mokraći, vlasnik se upućuje da u takvim slučajevima ne daje sljedeću dozu inzulina. Cilj učestalih provjeravanja i naknadnog podešavanja terapije je testom utvrditi negativne rezultate za ketonska tijela te nalaz glukoze u vrlo maloj količini.

3.3.3. Prognoza

Mnogi tvorovi koji obole od jatrogene hiperglikemije odmah nakon operacije inzulinoma mogu biti samo “prolazni” dijabetičari. Prognoza takvih pacijenata je uglavnom dobra jer hiperglikemija obično nestaje jedan do dva tjedna poslije operacije te liječenje nije potrebno. Prognoza je lošija i neizvjesna za pacijente koji su spontano razvili diabetes mellitus ili je on otkriven tek nekoliko tjedana ili mjeseci nakon operacije. Nerijetko je vrlo teško nastojati regulirati koncentraciju glukoze u krvi u takvih pacijenata (CARPENTER i QUESENBERRY, 2012.).

3.4. Bolesti štitnjače

Hipertireoidizam i hipotireoidizam koji se klinički očituju nisu utvrđeni u domaćih tvorova (FOX i sur., 2000.). Pseudohipoparatireoidizam, nasljedno stanje u ljudi, opisuje skupinu abnormalnosti s karakterističnim kliničkim te laboratorijskim nalazima hipoparatireoidizma (hipokalcemija, hiperfosfatemiija) no s visokim udjelom plazmatskog paratireoidnog hormona koji nije u mogućnosti djelovati na ciljne stanice (DE MATOS i sur., 2014.). Dosad je opisan u samo jednog jedanpolgodisnjeg kastriranog tvora. Tvor je primljen na kliniku zbog opetovanih epileptičnih napada te su rezultati dijagnostičkih pretraga pokazali nisku koncentraciju serumskog kalcija, visoku koncentraciju serumskog fosfora te visoku koncentraciju serumskog paratireoidnog
hormona. Oboljelom tvoru propisano je dugotrajno liječenje dihidrotakisterolom, analogom vitamina D te kalcijevim karbonatom (WILSON i sur., 2003.).
4. Zaključak

1. Hormonski poremećaji, osobito oni povezani s neoplastičnim bolestima, često se susreću u domaćih tvorova. Inzulinomi ili tumori stanica Langerhansovih otočića te tumori nadbubrežne žlijezde čine većinu neoplazija tvorova a posebno su česti u životinja srednje do starije dobi iako se ponekad mogu pojaviti i u mladih tvorova. Točan etiološki čimbenik odgovoran za visoku incidenciju ovih stanja tek se treba utvrditi.

2. Inzulinomi su mali tumori beta stanica pankreasa koji za posljedicu ima otpuštanje prevelike količine inzulina i posljedičnu hipoglikemiju. Također, tumorske stanice ne reagiraju na normalne inhibitorske mehanizme te izlučuju prevelike količine inzulina kao odgovor na normalne podražaje. Posljedica dugotrajne inzulinemije je onemogućena glukoneogeneza i glikogenoliza u jetri dok je periferni unos glukoze u stanice tkiva povišen. Niska koncentracija glukoze u krvi u zdravim životinjama aktivira glukoreceptore u rombencefalonu i hipotalamusu i inducira otpuštanje glukagona, kortizola, adrenalina i hormona rasta. Ovi hormoni povećavaju koncentraciju glukoze u krvi, stimuliraju glukoneogenezu i glikogenolizu u jetri te onemogućuju periferni unos glukoze. Od iznimne važnosti je diferencijalno dijagnostički razlučiti bolesti i stanja koja se mogu manifestirati slično inzulinomu (bolesti srca, trauma, metabolički poremećaji, itd.).

3. U liječenju inzulinoma služimo se ili terapijom prednizolom i/ili diazoksidom te kirurškim odstranjivanjem dijela pankreasa. Prognoza nakon liječenja je dobra. Iako je pojava metastaza rijetka u tvorova, moguće je ponovno pojavljivanje same bolesti.

5. Sponatani diabetes mellitus vrlo je rijedak u tvorova. Većina tvorova razvije jatrogeni dijabetes kao posljedicu agresivne pankreatektomije koja se provodi u svrhu uklanjanja tumora beta stanica pankreasa.
6. Hipertireoidizam i hipotireoidizam koji se klinički očituju nisu utvrđeni u domaćih tvorova.
5. Sažetak

Patofiziologija hormonskih poremećaja u domaćih tvorova

Tvorovi su domesticirane životinje. Njihovi divlji preci su najvjerojatnije europski i stepski tvor. Iako tvor nije za svakoga, mogu biti dobri kućni ljubimci za pravog vlasnika. Nježni su i vežu se za svoje vlasnike, većinu dana su tihi ali i vrlo razigrani. Životini vijek im je oko šest godina ali ukoliko se o njima vodi briga, mogu dosegnuti i deset godina starosti.

Hormonski poremećaji su među najčešćim bolestima koje pogađaju tvorove. Tumori Langerhansovih otočića gušterače, poznati kao inzulinomi i tumori nadbubrežne žlijezde, stanje koje se opisuje kao hiperadrenokorticizam, su češće opisani u tvorova nego u bilo koje druge životinjske vrste. Inzulinomi su tumori koji proizvode inzulin koji uzrokuju hipoglikemiju te karakteristične kliničke znakove kao što su povraćanje, mučnina, slabost stražnjih nogu, staklasti pogled i/ili koma. Vizualizacija tumora je vrlo teška zbog njihove izrazito male veličine te se pri dijagnosticiranju služi mjerenjem koncentracije glukoze u krvi. Ovo stanje može se liječiti kirurški i/ili medicamentoznom terapijom.

Kako se usprkos liječenju vrlo često pojavljuju novi inzulinomi, prosječno vrijeme preživljavanja je oko godinu dana. Bolest nadbubrežne žlijezde je često stanje koje također pogađa ovu vrstu životinja. Karakterističan klinički znak ove bolesti su bilateralna alopecija koja započinje na repu te napreduje prema kranijalnom dijelu tijela, povećanje vulve u ženki tvora te pruritus s eritemom. Za postavljanje dijagnoze korisno je služiti se kombinacijom ultrazvuka, mjerenja koncentracije hormona te pretragama krvi. Vrlo dobra prognoza se može očekivati ukoliko se oboljela životinja podvrgne kirurškom zahvatu uklanjanja tumora. Uspješnost medicamenteznog liječenja, ukoliko se ono provodi (mitotan), daje vrlo nedosljedne rezultate.

Ključne riječi: inzulinom, hipoglikemija, hiperadrenokorticizam, nadbubrežna žlijezda, tvorovi
6. Summary

Pathophysiology of endocrine diseases in domestic ferrets

Ferrets are domesticated animals. Their most likely wild ancestors are the European polecat and the Steppe polecat. While ferrets are not for everyone, they can make great pets for the right owner. They are affectionate and bond to their owners, quiet for a large part of the day and playful. If well taken care of, healthy ferrets can live up to 10 years of age. However, their average lifespan is approximately 6 years. Endocrine diseases are among the most commonly diseases affecting ferrets. Tumours of the islet cells in the pancreas, known as insulinomas, and tumours of the adrenal glands known as hyperadrenocorticism are more often described in this species than in any other species. Insulinomas are insulin-producing tumours which cause hypoglycaemia and characteristic clinical signs, such as vomiting, nausea, weakness of the hind limbs, a glazed look in the eyes and/or coma. Because of their small size, visualisation of insulinomas is often difficult, rendering measurement of blood glucose as the primary diagnostic tool. The condition can be managed both surgically and medically. Due to the appearance of new islet cell tumours, the average survival is approximately one year. Adrenal disease is a very common condition in these animals as well. The classic signs include bilateral alopecia beginning at the tail and progressing cranially, vulvar enlargement in female ferrets and possibly pruritus with erythema. Imaging diagnostics, hormonal assays, and general blood values are all useful in establishing a diagnosis when combined. A good prognosis for recovery can be expected after undergoing a surgical excision of the diseased gland. When medical treatment (mitotane) is used, results are variable at best.

Key words: insulinoma, hypoglycaemia, hyperadrenocorticism, adrenal gland, ferrets
7. Literatura

8. Životopis